EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Aliasing in 3D Reconstructions
Mip-NeRF and Mip-Splatting

César Diaz Blanco
March 23, 2025

Seminar Winter 2024 /2025

Graphics, Computer Vision and Machine Learning

Aliasing

in 3D Reconstructions

Mip-NeRF and Mip-Splatting

César Diaz Blanco

a
a i

&
i

Figure 1: Mip-NeRF and Mip-Splatting synthesize novel views from a scene at different scales and focal

lengths to those used during training.

Abstract

Novel view synthesis (NVS) aims to generate im-
ages from unseen camera poses. Neural Radiance
Fields (NeRF) and 3D Gaussian Splatting (3DGS)
have showed impressive results but struggle with
aliasing when rendering views at scales or focal
lengths different from the training set. NeRF ex-
hibits blurring or aliasing under varying sampling
rates, while 3DGS suffers from structural erosion or
thickening. This report details how Mip-NeRF and
Mip-Splatting address these limitations through
anti-aliasing strategies grounded in signal process-
ing and classical computer techniques. Mip-NeRF
replaces NeRF’s ray tracing with cone tracing re-
ducing errors by 60% over NeRF while halving stor-
age. Mip-Splatting introduces a low-pass filter to
constrain the size of the 3D Gaussian primitives
based on the maximal sampling frequency in the
training set. Moreover, it replaces 3DGS’ dilation
on the projected gaussians with a low-pass filter
which simulates a 2D box filter. Both methods out-
perform their predecessors in visual quality, with
Mip-Splatting excelling in efficiency and robustness
across scales.

1 Introduction

Novel view synthesis (NVS) is the task of synthesiz-
ing a target image with an arbitrary target camera
pose from given source images and their camera
poses. Recent progress has been successful with
the aid of machine learning with neural radiance
fields (NeRFs) [MST*20] and 3D Gaussian Splat-
ting (3DGS) [KKLD23] at the forefront.

The results for both methods are remarkable
when synthesizing novel views at the same distance
or focal length as the training images since the sam-
ple rate is the same. However, when synthesizing
views at different focal lengths or distances to the
scene compared to the training images, these meth-
ods fail to produce faithful renderings. In the case
of NeRF, the rendered images are either excessively
blurred for higher sampling rates at closer views or
aliased for lower sampling rates at distant views.
For 3DGS, erosion of fine structures is present at
higher sampling rates and thickening of fine struc-
tures at lower sampling rates.

Mip-NeRF [BMT*21] proposes to do volume ren-
dering along cones and its sections, frustum or
frusta in plural, instead of points along rays.

MipSplatting [YCH'24] proposes to enforce a
scene-dependent-constraint on the 3D gaussians
and a 2D box filter on the projected 2D gaus-
sians. Mip-NeRF improves upon NeRF in single-
scale settings and decidedly outperforms it in multi-
scale settings reducing errors by 17% and 60% re-
spectively relative to NeRF. Furthermore, its stor-
age is half of its predecessor as it doesn’t require
two separate multilayer perceptrons (MLP) to rep-
resent coarse and fine details. Likewise, Mip-
Splatting outperforms 3DGS in single-scale settings
and multi-scale settings by reducing errors relative
to its predecessor by 60% for the latter configura-
tion. Both methods have similar rendering times
as their predecessors: Mip-Splatting achieves real-
time rendering while Mip-NeRF doesn’t.

In this report, first in section 2, we will present
the works introducing the underlying representa-
tions: NeRF and 3DGS. In section 3 we will briefly
explain the theory behind aliasing. Then in sec-
tions 4 and 5, we will focus on the methods used
by the authors of Mip-NeRF and MipSplatting to
overcome their predecessors’ sampling artifacts by
re-framing classical approaches against aliasing. In
section 6.3, we will highlight a new type of aliasing
that emerges when sampling at higher rates than
those shown during training. This phenomenon
contrasts with classical computer graphics where
aliasing is only present when sampling at lower
rates. Finally, in section 6.2, we will compare Mip-
NeRF and Mip-Splatting storage, training, and ren-
dering time against their predecessors and com-
pare Mip-NeRF, 3DGS, and Mip-Splatting on the
basis of their visual quality, peak signal-to-noise
ratio (PSNR), structural similarity index measure
(SSIM), and learned perceptual image patch simi-
larity (LPIPS).

2 Preliminaries

The process of synthesizing an image using a com-
puter program is called rendering. Different tech-
niques exist such as rasterization and ray-tracing.
Ray-tracing is a general technique for modeling
light transport and a specific algorithm inside this
family is volume rendering. Volume rendering, as
we will see in section 2.1, details a method to com-
pute the mapping of scene geometry to pixels and
their colors. On the other hand, rasterization refers
only to the process of mapping scene geometry to
pixels. In this sense, NeRF [MST*20] is totally re-

liant on the volume rendering algorithm as it ren-
ders an image by querying a MLP at points along
the view-rays and integrating their colors. On the
other hand, 3DGS [KKLD23]| represents a scene as
a point cloud of 3D gaussian primitives. The pro-
jection of these gaussians into 2D gaussians is simi-
lar to a rasterization process but it still relies on the
volume rendering algorithm to compute the pixel’s
color. Both of these methods are explained in detail
in sections 2.2 and 2.3.

2.1 Volume Rendering Equation

The theory behind both NeRF [MST*20] and
3DGS [KKLD23] is volume rendering. The core
idea as in surface rendering, is to cast a camera
ray to the scene and keep track of the ray hits
which are then used to determine the pixel’s color
value. The volume rendering equation returns the
expected color by integrating along the ray from
to, the first point just outside the camera, to t¢, an
arbitrary last point along the ray:

/ " Tt b)elt)dt 1)

to

Where T'(t) is the transmittance or probability of
the ray not being absorbed yet from its origin to
point ¢, () is the volume density or probability of
ray being absorbed at point ¢, and c(t) is the RGB
color at point .

The volume rendering equation is approximated
by splitting the ray into n segments with endpoints
{t1,t2,...,tn4+1} with constant lengths ¢; = t;11 —
t;. Density and color can be treated as constant
in these segments but not transmittance since the
segments are not necessarily aligned with surfaces.
The approximation is as follows:

/ Y T(t)o(t)c(t)dt ~ f: (/t ;M T(t)dt) oic;

to i=1

(2)

To approximate the transmittance integral, it
is useful to define the segment’s opacity as a; =
1 — exp(—0;6;) which indicates how much light is
contributed by ray segment ¢. Thus, the transmit-
tance up to segment ¢ must be the product of pre-
vious segments not contributing to the integration:

i—1

Ti = H(l — O[j)

=1

3)

Finally, in both NeRF and 3DGS, the volume ren-
dering equation is approximated by summing over
each segment i’s product of: the probability T; that
no previous segments have absorbed the ray, the
contribution «; of this segment, and the RGB color
c; at this segment:

z": Tiaic; (4)
i—1

2.2 NeRF

NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis [MST*20] uses the
weights of a MLP to infer the volume density at a
given point and the color it emits at a given angle.
Then, to synthesize a novel view, a pixel is rendered
through the approximated volume rendering equa-
tion (4). The input to the MLP is a 5D coordinate
with the first three coordinates corresponding to a
point x = (z,y, z) along the ray segment ¢ and the
last two to the viewing direction d = (0,¢). Its
output is the corresponding volume density ¢ and
the view-dependent RGB color c:

Fo : (x,d) — (c,0) (5)

The authors of NeRF introduce a positional en-
coding to map continuous input coordinates into
a higher dimensional space to enable the MLP
to more easily approximate higher frequency func-
tions. This is done by « which maps the input 5D
coordinates to a higher dimensional space R2%:

T

(6)

The input to NeRF is a set of images with the
corresponding camera parameters: number of pix-
els in x and y dimension, focal length along x and
y dimension, and camera position and rotation in
world coordinates. During training, a ground truth
image and its camera parameters are sampled from
the training set, an image is rendered pixel by pixel
with equation (4) by querying the MLP with the
points along the rays produced according to the
corresponding camera parameters, and the MLP is
optimized by minimizing the total squared differ-
ence between the rendered and ground truth RGB
values per pixel.

In practice, two MLPs, coarse and fine, are
needed to do hierarchical volume sampling as free
space and occluded regions that do not contribute

y(x)= [sin(x)7 cos(x), ..., sin(2L71x)7 cos(2L71x)

to the rendered image are otherwise sampled re-
peatedly. The coarse MLP is sampled at N, = 64
equally spaced points along the ray. From these,
a piecewise-constant probability density function
(PDF) with domain along the ray is produced with
values at each segment as follows:

w;
N
Zj:cl W

To prioritize regions with higher volume density
N; = 128 points are sampled from this distribu-
tion. Finally, the pixel will be rendered by query-
ing the fine MLP at both the equally sampled N,
points and the hierarchical sampled N points.

2.3 3DGS

3D Gaussian Splatting for Real-Time Radiance
Field Rendering [KKLD23] proposes to represent a
scene as a pointcloud of 3D gaussians. These gaus-
sians are projected along the plane perpendicular
to the viewing axis into 2D gaussians in a raster-
ization step. Finally, to compute the color value
at each pixel, the volume rendering equation (4)
is computed by integrating the opacity and color
of each gaussian from closest to farthest gaussians.
The gaussians are defined in world space and have
mean p and 3D covariance matrix 3

w; = Tioy, W =

(7)

G(z) = e~ s@—m e (@—p) (8)
Each gaussian also has spherical harmonics (SH)
coefficients and opacity « as attributes to repro-
duce the scene’s appearance. In computer graphics
the set of Laplace’s spherical harmonics is used to
quickly encode or decode directional information;
in the case of 3DGS, the color of each gaussian is
encoded as the 16 coefficients of the Oth, 1st, 2nd,
and 3rd bands of the Laplace’s spherical harmonics
functions.

In the rasterization step, the gaussians are trans-
formed according to the view point defined by ro-
tation R € R3**3 and translation t € R? so that its
camera coordinates are as follow:

W =Ru+t, ¥ =RIR' (9)
Recall that in standard camera coordinates the z-
axis is the viewing axis, thus by discarding the last
row and column of ¥’ as well as the last entry of
the resulting 2D gaussian is defined in image space.

> cee
Clone Optimization
Continues

CPT: ﬁptmzation (
Continues

Figure 2: 3DGS’ adaptive densification. Gaussians
are cloned when geometry is insufficiently covered
and split when geometry is represented by one large
splat.

Under
Reconstruction

Over-
Reconstruction

Once the rasterization step is finished, the gaus-
sians are sorted in ascending order with respect to
their depth which is the last entry of x’. The color is
computed with the approximated volume rendering
equation (4) but instead of summing over segments
¢ summing over the sorted gaussians. Finally, all
gaussian parameters are optimized by minimizing
a L1 and D-SSIM loss between the rendered and
ground truth RGB values per pixel.

To ensure all geometries are well represented,
new gaussians are created from gaussians with
high positional gradients which signal areas that
are either completely missing features, under-
reconstruction, or would benefit from higher fre-
quency details, over-reconstruction. The distinc-
tion between these two cases and the way 3DGS’
adaptive densification scheme handles them is pre-
sented in Fig. 2 .

In practice, a few considerations must be taken
into account for stable computation and memory
efficiency. First, since covariance matrices must be
symmetric and positive semi-definite, direct opti-
mization of its entries is not trivial to setup. In-
stead, the authors of 3DGS propose to decompose
the covariance matrix into a scaling and rotation
matrix: ¥ = RSSTRT. This is not enough since
rotation matrices are also hard to optimize since
they must satisfy that RR" = 1. Instead, the rota-
tion is represented through a unit quaternion since
keeping its norm as one is a constraint that is easy
to enforce.

Since optimization is done with a graphics pro-

cessing unit and its memory is limited, gaussians
with opacity « close to zero are removed and pro-
jected 2D gaussians are dilated. The gaussians are
dilated by increasing its size in all directions by
s = 0.3 as follows:

G(7)2p = e‘%(z—#l)T (' +s1) " Ha—p') (10)
This dilation is needed in complex scenes, where
a large number of small gaussians are created by
the adaptive density scheme. The dilation helps to
represent details with the least gaussians possible
and avoid redundancy.

3 Aliasing and mipmaps

Since novel view synthesis methods are ultimately
trying to represent a signal, they are bound to
Nyquist’s Theorem [Nyq28]. This theorem de-
scribes the conditions under which a continuous sig-
nal can be accurately represented or reconstructed
from its discrete samples without loss of informa-
tion. It goes as follows:

Condition 1 The sampling rate U must be at least
twice the highest frequency present in the continu-
ous signal: U > 2v.

In practice, to avoid introducing low frequency ar-
tifacts when reconstructing a signal at frequencies
higher than twice the sampling rate, a low-pass fil-
ter is applied to the signal before sampling which
smooths out any frequency components above /2.

In computer graphics, since the sampling rate
constantly changes while navigating a scene, fast
solutions are needed to avoid aliasing. Omne of
the most widely used methods in rasterization is
proposed by Lance Williams in [Wil83]. Williams
proposes a "pyramidal parametric” prefiltering and
sampling geometry on the texture images which
minimizes aliasing effects and assures continuity
within and between target images. The prefiltered
images are called pyramids since they represent the
signal at a progressively lower resolution: a factor
of two smaller than the previous level. At rendering
time, the pixel area covered by the texture is com-
puted and the two nearest prefiltered images (lower
and higher resolution) are used to compute an in-
terpolated image which matches the texture’s pixel
area. For instance, if a texture uses 40x40 pixels,
then the trilinear interpolation of the 64x64 and
the 32x32 mipmaps is used for rendering. In the

original paper this interpolation between prefiltered
images is refered as "mip” mapping; over time this
term became synonym with aliasing solutions.

While the underlying representations studied in
Pyramidal Parametrics, Mip-NeRF [BMT*21], and
Mip-Splatting [YCH™24] are different and thus the
approaches to these are different as well, the key
idea behind them is the same as in signal process-
ing: apply a low pass filter to the signal before sam-
pling. When it comes to images, this can be under-
stood as making sure that a pixel’s color faithfully
represents the area it covers in a scene. In practice,
this could be achieved by re-framing the volume
rendering equation to do cone tracing as shown in
Fig. 3 and detailed in section 4 or by applying a
box filter to the projected primitives as detailed in
section 5.

4 Mip-NeRF

As seen in section 2.2, NeRF [MST*20] computes
a pixel’s color as the integration along a single in-
finitesimally narrow ray per pixel instead of all in-
coming radiance onto the pixel. This assumption
results in aliased images when reconstructing the
signal at frequencies different to those present in
the training set. In section 4.1, we will explore
how Mip-NeRF [BMT*21] ensures the pixel foot-
print is taken into account when computing equa-
tion (4). In sections 4.2 and 4.3, we will detail how
the MLP input and hierarchical sampling change
from its predecessor.

4.1 Cone tracing

Mip-NeRF: A Multiscale Representation for Anti-
Aliasing Neural Radiance Fields [BMT"21] pro-
poses to compute a pixel’s color by casting a cone
as seen in Fig. 3b. The cone apex lies at the camera
center o and since it should cover a pixel, its radius
r at the image plane is dependent on the pixel width
in world coordinates w,; specifically r = 2w, /v/12.

Since Mip-NeRF also relies on the volume ren-
dering equation, the next step is to split the cone
along planes perpendicular to the cone direction;
these segments are called frustum or frusta in plu-
ral. A naive approach would query the MLP at
points inside the frusta and average the inferred
densities and colors. This approach would fail to be
efficient as each segment would require many more
queries to the MLP compared to the single query

a) NeRF b) Mip-NeRF

Figure 3: NeRF (a) casts rays and encodes the po-
sition of the sampled points along it. Mip-NeRF
(b) casts cones and encodes a gaussian fitted to the
frusta along it.

for a point along the ray in NeRF [MST*20]. The
authors of Mip-NeRF instead approach this in two
steps: fit the frusta to gaussians and take the ex-
pected positional encoding of the fitted gaussians
as the MLP input. We explain the first step in the
next paragraph and the second step in section 4.2.

To define the gaussian fitted to the cone it is
helpful to think about the ray pointing in the direc-
tion of the cone; this is the same ray used in NeRF
and the volume rendering equation. Recall that in
section 2.1 points t; are sampled along the ray; in
cone tracing these determine the frusta’s half length
along the ray ts = (t;41 —1;)/2 and the frusta’s cen-
ter along the ray ¢, = (t;4+1+t%;)/2. Then, the fitted
gaussians have mean depth u; along the ray, vari-
ance along the ray o2, and variance perpendicular
to the ray o

. 2t,,t3 2t atg(12t% — t3)
PR 2 T 3 15(312 +13)2
2 52 4t4
2 2 M) [
el (A . IR 11
=T (4 TR T BEE 0 (11)

Recall that r = 2w, / v/12 is the cone radius at the
image plane. Note that there is only one perpen-
dicular variance since the cone is segmented along
the plane perpendicular to the cone direction such
that the cuts are circular. The previously defined
gaussian is still in the cone coordinate system, to
transform them to world coordinates the following
transformation is done:

2 T 2 ddT

H:0+Mtd7 EZUt(dd)+UT H_W
2

1

Where o is the cone apex which lies at the camera
center and d is the cone ray direction.

8 NeRF Mip-NeRF
E<t—e—tstot—o—+—> <[+t
S ; P ; T ; P ¢ kg
7 Y ovy v Yo vy v

V \’\ | IWI‘\ H‘ VI HH‘\ \l\l
2 ‘ ‘ I
£ \ \ [
3 | 0—
o _
= I

» >

e T R AL
: "Il .
g
i f
=l
o
i ol |
53]

Figure 4: NeRF encodes all frequencies at the
same amplitude while Mip-NeRF encodes frequen-
cies based on the gaussian’s variance.

4.2 Integrated positional encoding (IPE)

Similar to its predecessor, Mip-NeRF [BMT*21]
uses a MLP to infer density and color. This means
that it also needs to deal with the fact that MLPs
learn a smooth function which cannot represent
high frequency signals. Thus, Mip-NeRF also en-
codes the input to the MLP into a higher dimen-
sional space: y(x) from equation (6). This time,
however, a gaussian needs to be encoded rather
than a point. To do so, the authors of Mip-NeRF
rewrite the encoding v(x) in matrix form:

1 0 20 o0
P=|0 0-.-

0 2 0 0 2¢
Then, the choice to approximate the frusta as gaussians
pays off as linear transformations of gaussians have a

closed form. Its parameters are:

p,=Pp, X, =PXP' (14)

Then, since the original goal was to avoid sampling
points from the frusta or gaussian, Mip-NeRF in-
stead computes the expected positional encoding of
the fitted gaussians and takes this as the input to
the MLP. Again, the choice of gaussians is favorable
as the expectations of the sine and cosine functions
over a gaussian have closed forms:

Eynn(u,02) [5in(2)] = sin(u) exp (—(02/2)) , (15)
Eon(u,02) [cos(z)] = cos(u) exp (—(0?/2)) (16)
A quick inspection of the input to the MLP,

equations (15) and (16), already hints at the effec-
tiveness of Mip-NeRF. Pixels which cover a lot of

T
_ sin(Px
0 2kt o 1]) W(X):LOS((Pxi this time, the weights are further modified to pro-

space will have big frusta and thus be approximated
through gaussians with a high variance. The expec-
tation value for these gaussians will be drastically
reduced at high frequencies due to the exponential
term. On the other hand, pixels which cover lit-
tle space will be fitted with small gaussians whose
expectation values could be similar for all frequen-
cies. Fig. 4 shows the difference between NeRF’s
positional encoding and Mip-NeRF’s integrated po-
sitional encoding for one-dimensional signals. This
difference in the input enables the MLP to repre-
sent multiple scales.

4.3 MLP

Recall that in NeRF [MST*20] a separate MLP
is needed to coarsely represent the scene and
do hierarchical volume sampling. In Mip-NeRF
[BMT*21], there is no need for a coarse MLP be-
cause the input already allows the network to rea-
son about different scales. Compared to NeRF this
represents a 50% storage reduction.

In Mip-NeRF, hierarchical sampling starts with
querying the MLP with N. gaussians fitted to
equally spaced frusta of the same length along the
traced cone. To construct a probability density
function along the cone ray as done in NeRF and
explained in section 2.2, the weights across the
frusta’s length are computed as w; = T;«;. Except

duce a non-zero, wide, and smooth upper envelope
on the distribution:

wh, = % (max(wy—1, wg) + max(wg, wr4+1)) + 0.01

(17)
After normalization of these weights, Ny points are
sampled from this distribution which determine the
planes between the frusta used for computing the
pixel’s color. For fair comparison, N, and N; are
set to 128 as to match the total number of MLP
evaluations in NeRF. Finally, as in NeRF, the MLP
is optimized by minimizing the total squared differ-
ence between the rendered and ground truth RGB
values per pixel.

5 Mip-Splatting

To avoid subpixel 2D gaussian instances, 3DGS
[KKLD23] applies a dilation operation onto all pro-
jected gaussians as seen in section 2.3. This effec-
tively widens the gaussians’ signal and ultimately

bR

Figure 5: Left: Ground truth image of bike seat.
Right: High frequency artifacts with 3DGS when
sampling at higher rate.

stops the adaptive densification scheme from creat-
ing a large number of small gaussians and exceed-
ing GPU capacity. While this method works as it
still minimizes the loss against the training set, it
fails to accurately represent the scene when render-
ing images at different distances or focal lengths to
those seen during training as seen in Figs. 5 and 6.

The reason behind the erosion artifacts present
when rendering images at higher sampling rates
is that during optimization, highly anisotropic 3D
gaussians are not penalized as their projection is
dilated and ultimately produce a faithful render-
ing. However, when images are rendered at closer
distances, the fized dilation does not widen the pro-
jected Gaussians’ signal proportionally to the cam-
era’s proximity. As a result, the Gaussians appear
narrower, as shown in Fig. 5. In section 5.1 we will
detail how Mip-Splatting [YCH™24] solves this by
applying a 3D smoothing operation to each gaus-
sian.

When it comes to lower sampling rates, 3DGS
has two shortcomings. First, as in NeRF: it as-
sumes that a pixel’s color can be computed from
a single ray as it follows this principle when pro-
jecting the 3D gaussians into image space. Second,
when images are rendered at farther distances, the
fized dilation does not widen the projected Gaus-
sians’ signal proportionally to the camera’s dis-
tance. As a result, the Gaussians appear thicker,
as shown in Fig. 6. In section 5.2 we present Mip-
Splatting’s method which replicates the physical
imaging process where a pixel’s color represents the
integrated photons hitting a sensor.

5.1 3D Smoothing Filter

Recall from Nyquist’s Theorem [Nyq28] that the
sampling rate depends on the highest frequency
present in the signal. In novel view synthesis the
highest frequency of the reconstructed scene is de-
termined by the training images. Next, for a pin-
hole camera model with focal length f in pixels
pointing at objects at a depth d, the sampling rate
v is given as f/d. If the depth d is given in me-
ters then this matches the general understanding
of sampling rate: how many samples (in this case
pixels) are taken from the original signal (in this
case per meter).

Thus, the key idea of Mip-Splatting [YCH™24] is
to compute the maximal sample rate 7y, of gaussian
k and regularize its covariance matrix to smooth
out any frequency components above /2. In Mip-
Splatting, to get the maximal sampling rate oy for
gaussian k they compute the N possible sampling
rates from N different training camera viewpoints
making sure to discard instances where the gaus-
sian is outside of the view frustum with indicator
function 1,,. Then they take the maximum:

5y, = max ({nn(ak) - g—z}j_) (18)

During training, the gaussians’ mean position and
thus depth will change. However, the authors of
Mip-Splatting observe that it doesn’t change much
between iterations so that the maximal rate for
each gaussian is updated every m = 100 iterations.

Figure 6: Left: Ground truth image of bike. Right:
Dilation and brightening artifacts with 3DGS when
sampling at lower rate.

To constrain the maximal frequency of the
3D representation, a Gaussian low-pass filter with
covariance matrix sI/Py is applied to each 3D
gaussian by convolving the two gaussians. The
choice of a gaussian low-pass filter is adequate
since the convolution of two Gaussians has a closed
form. The regularized gaussian is:

R

—s(e—p) " (S50 (@—p)
DEE

G(@)reg =
(19)
Where the mean p and covariance Y correspond to
the kth gaussian and s = 0.2 is a hyperparameter
to change the size of the filter. This achieves the
same purpose as the dilation in 3DGS [KKLD23]:
stop the redundancy of gaussians by limiting their
size, but with a first principles approach following
Nyquist’s theorem [Nyq28]. Once training is fin-
ished, the regularized gaussian may be saved as the
final representation to eliminate additional compu-
tation during rendering.

5.2 2D Mip Filter

Mip-Splatting [YCH'24] secks to replicate the
physical imaging process where a pixel’s color rep-
resents the integrated photons hitting a sensor.
While a classical approach would do this operation
in image space, the authors of Mip-Splatting lever-
age the projected 2D gaussians and apply the filter
to these 2D primitives for efficiency given its closed
form:

[|X2p] (g T 1
G(2)in = 1| ——2— (z—p) (Bep+sl)”™ " (z—p)
(l') p |E2D T+ sl e 2

(20)
Where s = 0.1 is chosen to cover a single pixel in
screen space. Thus the total variance of the mip
filter and the 3D smoothing operation add to 0.3
which is is the variance used for the dilation oper-
ation in 3DGS [KKLD23|.

The key difference to the dilation operation is
that in 3DGS the dilation affected only the co-
variance and there was no prefactor adjustment for
renormalization, thus the aliased results show a di-
lation and brightening show in Fig. 6. On the other
hand, Mip-Splatting does account for normaliza-
tion of the convolved gaussians.

6 Comparison

We already saw the algorithmic differences be-
tween Mip-NeRF [BMT*21] and Mip-Splatting
[YCH'24] against their predecessors in sections 4
and 5. Following we will explore: the differences in
storage, training and rendering time in section 6.1,
improvements in visual quality in section 6.2 and
aliasing at higher sampling rates in section 6.3.

6.1 Storage size, training, and rendering time

Recall from section 4.3 that Mip-NeRF [BMT*21]
uses one MLP compared to NeRF’s [MST*20]
coarse and fine MLPs. Due to this Mip-NeRF uses
half as much storage as NeRF. In Mip-Splatting
[YCH™24], since the regularized gaussians from sec-
tion 5.1 are saved as the final representation, there
is no change in storage size.

Again, since Mip-NeRF queries a single MLP
compared to NeRF’s querying of coarse and fine
MLPs, Mip-NeRF is 7% faster than its predeces-
sor during training and rendering. Still training
times are slow at around 48 hours per scene in
the follow-up paper Mip-NeRF360 [BMV™22]. In
Mip-Splatting during training, the maximal sam-
pling rate for each gaussian is calculated every
100 iterations. However, this only represents a
’slight increase in training overhead” according to
the authors. Taking into consideration that train-
ing times in 3DGS [KKLD23] are around 40 min-
utes per scene, the maximal sampling rate compu-
tation overhead shouldn’t be significant. Both of
the training times are when using an A100 GPU.

During rendering, 3DGS does a dilation opera-
tion by changing the gaussians’ diagonal covariance
entries. Mip-Splatting does a low-filter operation
which also modifies the gaussians’ diagonal covari-
ance. Thus they are both similar in their runtime
complexity and both achieve real-time rendering:
more than 30 rendered images per second. On the
other hand Mip-NeRF360 takes around 10 seconds
per rendered image when rendering with an A100
GPU.

Since performance is similar for both Mip-NeRF
and Mip-Splatting when compared to their prede-
cessors, if the reader was to choose any of these rep-
resentations they should think about whether the
scene to represent benefits more from a ray-tracing
method or a rasterization method. Ray-tracing,
and thus NeRF-like methods, are able to handle

scenes including reflections, refractions, translu-
cency, specularity or any other effects where light
is not absorbed. On the other hand, rasterization
and thus 3DGS-like methods have a harder time ap-
proximating these effects but they are a lot faster
since rendering time only depends on the number
of primitives in view.

6.2 Side-by-side comparisons

We take the quantitative results from the Mip-
Splatting [YCH™24] paper which includes evalua-
tions on the Blender dataset for single scale train-
ing and multi-scale testing. Fig. 7 shows that ero-
sion is common at lower resolutions for fine struc-
tures in Mip-NeRF [BMT%21]. Table 1 shows
that both Mip-NeRF and Mip-Splatting outper-
form their predecessors and that Mip-Splatting out-
performs all methods in this report.

6.3 Aliasing at higher sampling rates

As seen in sections 4.1 and 5.2, we see that their so-
lutions for aliasing at lower sampling rates is similar
to those in classical computer graphics. The idea is
to replicate the physical imaging process and inte-
grate the rays hitting the pixel’s sensor to compute
its color. In the case of Mip-NeRF [BMT*21] this
is done by tracing over cones with radius relative to
the pixel width and in Mip-Splatting [YCH™"24] by
applying a low-pass gaussian filter on the projected
gaussians.

In classical computer graphics the optimal setup
is a sampling rate U twice the highest frequency:
U > 2v as the reconstructed signal will simply
repeat the texture’s pixels and represent the signal
as it was recorded. However for NeRF [MST*20]
and 3DGS [KKLD23], since their underlying
representations are removed from the sampling
(imaging) process, artifacts may emerge.

In the case of NeRF sampling at higher rates
when rendering new views leads to blurry artifacts
since its MLP is queried at individual points which
may have never been directly optimized during
training. Mip-NeRF solves this by optimizing
the MLP over volumes thus initializing more
regions which are then partially queried when
rendering closer views to the scene. In the case of
3DGS, due to memory issues during optimization,
gaussians need to have a lower limit to their size.
Mip-Splatting rightly sets this limit according to

their maximal sampling rate as measured from the
training camera viewpoints.

7 Conclusion

In this report, we examined the shortcomings
of NeRF [MST*20] and 3D Gaussian Splatting
[KKLD23] when rendering at scales or focal lengths
different from those seen during training. We re-
visited their foundations, and analyzed how Mip-
NeRF [BMT*21] and Mip-Splatting [YCH'24] im-
prove on their methods to stop aliasing.

Mip-NeRF mitigates aliasing by replacing tradi-
tional ray sampling with cone tracing. It fits gaus-
sians to the cone’s frusta, encodes these gaussians
into a higher dimensional space to represent high-
frequency details, and queries an MLP at their ex-
pected value to get the frusta’s density and color.
As a result, the MLP reasons about the size and
shape of each conical frustum instead of just its
centroid.

Mip-Splatting enhances the 3D Gaussian rep-
resentation by introducing a scene-dependent 3D
smoothing filter to limit the size of the gaussians
and ensure they don’t represent frequencies higher
than those seen in the training set. Furthermore, it
enhances the rasterization step by applying a gaus-
sian low-pass filter to the projected gaussians effec-
tively replicating the physical imaging process of
several rays hitting a sensor.

Our comparative analysis shows that both meth-
ods yield substantial improvements over their pre-
decessors, with Mip-Splatting standing out in this
report for its superior visual quality, as well as its
training and rendering efficiency.

Future work in Mip-Splatting, as the authors
suggest, could explore faster ways to compute the
per-gaussian 3D smoothing filter. In the case of
Mip-NeRF, cone tracing is a solid argument for
stopping aliasing at lower sampling rates. How-
ever, for higher sampling rates, a more principled
approach as in Mip-Splatting which grounds its 3D
smoothing filter in Nyquist’s theorem [Nyq28] could
be illuminating.

Mip-NeRF [BMT*21] 3DGS [KKLD23]

Mip-Splatting [YCH™24]

Figure 7: Single-scale Training and Multi-scale Testing on the Blender Dataset [MST*20]. All methods
are trained at full resolution and evaluated at different (smaller) resolutions to mimic zoom-out. Methods
based on 3DGS capture fine details better than Mip-NeRF. Mip-Splatting surpasses 3DGS [KKLD23]
at lower resolutions.

PSNR 1 SSIM 1 LPIPS |
Full Res. 1/2 Res. /4 Res. 1/8 Res. Avg. |Full Res. 1/2 Res. /4 Res. 1/8 Res. Avg. |Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.
NeRF [MST*20] 31.48 3243 30.29 26.70 30.23] 0.949 0.962 0.964 0.951 04956‘ 0.061 0.041 0.044 0.067 0.053
MipNeRF [BMT*21]| 33.08 33.31 30.91 27.97 31.31] 0.961 0.970 0.969 0.961 0.965 0.045 0.031 0.036 0.052 0.041
3DGS [KKLD23] 33.33 2695 21.38 17.69 24.84| 0.969 0.949 0.875 0.766 0.890 0.030 0.032 0.066 0.121 0.063
Mip-Splatting (ours) | 33.36 34.00 31.85 28.67 31.97| 0.969 0.977 0.978 0.973 0.974 0.031 0.019 0.019 0.026 0.024

Table 1: Single-scale Training and Multi-scale Testing on the Blender Dataset [MST20]. All methods
are trained on full-resolution images and evaluated at four different (smaller) resolutions, with lower
resolutions simulating zoom-out effects. While Mip-Splatting yields comparable results at training reso-
lution, it significantly surpasses previous work at all other scales.

References
[BMT*21]

[(BMV+22]

[KKLD23]

Jonathan T. Barron, Ben Mildenhall,
Matthew Tancik, Peter Hedman, Ri-
cardo Martin-Brualla, and Pratul P.
Srinivasan. Mip-nerf: A multiscale rep-

resentation for anti-aliasing neural ra-
diance fields. ICCV, 2021.

Jonathan T. Barron, Ben Mildenhall,
Dor Verbin, Pratul P. Srinivasan, and
Peter Hedman. Mip-nerf 360: Un-
bounded anti-aliased neural radiance
fields. CVPR, 2022.

Bernhard Kerbl, Georgios Kopanas,
Thomas Leimkiihler, and George Dret-
takis. 3d gaussian splatting for real-

10

[MST+20]

[Nyq28]

[Wil83]

time radiance field rendering. ACM
Transactions on Graphics, 42(4), July
2023.

Ben Mildenhall, Pratul P. Srinivasan,
Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance
fields for view synthesis. In ECCYV,
2020.

Harry Nyquist. Certain topics in tele-
graph transmission theory. Transac-
tions of the American Institute of Elec-
trical Engineers, 1928.

Lance Williams. Pyramidal paramet-

rics. In Proceedings of the 10th An-

[YCH"24]

nual Conference on Computer Graphics
and Interactive Techniques, pages 1-11.
Association for Computing Machinery,
1983.

Zehao Yu, Anpei Chen, Binbin Huang,
Torsten Sattler, and Andreas Geiger.
Mip-splatting: Alias-free 3d gaussian
splatting. Conference on Computer Vi-
sion and Pattern Recognition (CVPR),
2024.

11

