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1 Introduction

Novel view synthesis is the task of synthesizing a target image with an arbitrary
target camera pose from given source images and their camera poses.

Recent progress has been successful with the aid of machine learning with
neural radiance fields (NeRFs) [3] at the forefront.

This method is of importance to the field of virtual humans as it more accu-
rately represents the identity of human shapes by capturing color and texture
in a view-dependent appearance manner.

In this report we provide a brief overview of volume rendering heavily in-
spired by [7], followed by an explanation of the neural radiance field paper,
its limitations, and follow-up works to fix these. Finally, we briefly talk about
methods tailored to human image synthesis.

2 Volume Rendering

The process of synthesizing an image using a computer program is called ren-
dering. Volume rendering has its origin in radiative transfer physics [1]. The
core idea as in surface rendering, is to cast a camera ray to the scene and keep
track of the ray hits which then determine the pixel value.

In the physics interpretation there are three concepts which explain how
light interacts with objects: absorption, scattering, and emission. Scattering
accounts for light bouncing off instead of taking a straight path and is dropped
when doing volume rendering. Absorption happens when a ray is terminated
while transmittance, T (t), represents the probability of not being absorbed at
point t along the ray. Emission happens when a camera ray hits a surface which
is the same as hitting a high density σ(t) at point t along the ray.

Figure 1: Transmittance and density intuition.
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2.1 Derivation of the volume rendering equation

Following the probabilistic notion from figure 2 the transmittance is derived
from the density as follows:

P [no hits before t+ dt] = P [no hit before t]× P [no hit at t]

T (t+ dt) = T (t)(1− σ(t)dt)

T (t+ dt) is approximated with a first degree Taylor expansion around t:

T (t) + T ′(t)dt = T (t)− T (t)σ(t)dt

T ′(t)

T (t)
dt = −σ(t)dt

log T (t) = −
∫ t

t0

σ(s)ds

T (t) = exp

(
−
∫ t

t0

σ(s)ds

)
(1)

Where T (t0) = 1 as the ray could not possibly hit anything before exiting the
camera. The probability that a ray terminates at t is:

P [first hit at t] = P [no hit before t]× P [hit at t]

= T (t)σ(t)dt

And derive the volume rendering equation which returns the expected color
returned by the ray, which is given by the color, c, at the first hit:∫ tf

t0

T (t)σ(t)c(t)dt (2)

2.2 Approximating the volume rendering equation

In practice, integrals must be approximated as summations over discrete small
segments. The volume rendering equation (2) is approximated by splitting the
ray into n segments with endpoints {t1, t2, ..., tn+1} with lengths δi = ti+1 − ti.
Density and color are constant in these segments but not transmittance since
the density will have a narrow peak inside a segment when a surface is hit.∫ tf

t0

T (t)σ(t)c(t)dt ≈
n∑

i=1

∫ ti+1

ti

T (t)σicidt (3)

The transmittance integral (1) for segment i, t ∈ [ti, ti+1], is split in: the light
blocked by previous segments, and the light blocked by a part of the segment.

T (t) = exp

(
−
∫ ti

t0

σids

)
exp

(
−
∫ t

ti

σids

)

= exp

−
i−1∑
j=1

σjδj

 exp(−σi(t− ti)) (4)
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The segment opacity αi = 1− exp(−σiδi), rooted in the traditional alpha com-
positing method, indicates how much light is contributed by ray segment i.
Intuitively, if a ray segment highly contributes, then the transmittance after
such segment must be low. This is shown when expressing the transmittance
up to segment i, Ti, from the corresponding αs:

Ti = exp

−
i−1∑
j=1

σjδj

 =

i−1∏
j=1

(1− αj) (5)

The new expressions for transmittance (4) is used to integrate (3):∫ tf

t0

T (t)σ(t)c(t)dt ≈
n∑

i=1

Tiσici

∫ ti+1

ti

exp(−σi(t− ti))dt

≈
n∑

i=1

Tiσici
exp(−σi(ti+1 − ti))− 1

−σi

≈
n∑

i=1

Tici(1− exp(−σiδi))) =

n∑
i=1

Tiαici (6)

3 NeRF

The main goal of neural radiance fields is to achieve novel view synthesis. It
does so by providing the the RGB and density values needed in (6) to get T
and α. In the next sections we talk about how this is done.

3.1 MLP

The input to the MLP is a 5D coordinate with the first three coordinates cor-
responding to a point x = (x, y, z) along the ray segment i and the last two to
the viewing direction d = (θ, ϕ). Its output is the corresponding volume density
and directional emitted color:

FΘ : (x,d) → (c, σ) (7)

The MLP is optimized by following (6) to render a pixel for a view and com-
puting the loss as the total squared error from the true pixel color. The ray
is retrieved from the camera pose estimated by COLMAP. This process is de-
scribed in figure 2
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Figure 2: Transmittance and density intuition.

3.2 Positional Encoding

The basic implementation of optimizing a neural radiance field representation for
a complex scene does not converge to a sufficiently high resolution representation
and is inefficient in the required number of samples per camera ray. These issues
are addressed by transforming input 5D coordinates with a positional encoding
implemented as a mapping γ which outputs a higher dimensional space R2L:

γ(p) =
(
sin

(
20πp

)
, cos

(
20πp

)
, · · · , sin

(
2L−1πp

)
, cos

(
2L−1πp

) )
.
(8)

Ground Truth Complete Model No Positional Encoding

Figure 3: Removing the positional encoding drastically decreases the model’s ability
to represent high frequency geometry and texture, resulting in an oversmoothed ap-
pearance.

3.3 Geometry

Even though NeRF only optimizes for rendering quality by comparing corre-
sponding pixels in 2D, it is able to learn the geometry of the scene. This can
be easily done by altering (6) so that we calculate the expected depth:

t̄ =

n∑
i=1

Tiαiti (9)

Note that this is the same as calculating any statistic and thus it is possible to
”volume render” any quantity into a 2D image. Figure 4 shows scene editing of
higher-level semantic feature maps by using a CLIP similarity score. [8]
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Figure 4: Scene editing. NeRF renders an image from an unseen view and separates
foreground from background by matching the 3D features to the query patch features.

4 NeRF’s limitations and solutions

NeRF’s use of an MLP is both its advantage and pitfall. It enables optimiza-
tion as it is a continuous representation but also limits control of the output
geometry, lacks generalization as each NeRF encodes a single scene, and is more
expensive to train compared to other traditional methods like photogrammetry.
In the next sections we talk about these limitations and the follow-up works
that address these.

4.1 Scene specific and static

Given that NeRF takes in a 5D input, the first solution that comes to mind
is having a 6D input with time added. This näıve solution does not work as
the MLP is designed to learn a single representation and this solutoin would
be the same as training as many MLPs as frames we want to capture without
exploiting the similarity between scenes.

D-NeRF. [6] proposes to learn a canonical shape and its radiance in order to
disentangle the time dependent information from the MLP. The method first
transforms the point position to its canonical configuration as Ψt : (x, t) → ∆x.
t = 0 is chosen as the canonical scene Ψt : (x, 0) → 0. Then, the assigned
emitted color and volume density under viewing direction d is equal to those in
the canonical configuration Ψx : (x +∆x,d) → (c, σ). Here Ψx is the same as
FΘ in the original NeRF paper. Figure 5 shows the architecture of D-NeRF.

(x,y,z,t) (  x,  y,  z) (x   x,y   y,z   z, , ) (R,G,B, ) 

Scene Canonical Space Scene Canonical SpaceDeformed Scene

?

Figure 5: D-NeRF’s Architecture.
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4.2 No editing and no generalization

Since the scene is memorized in the network FΘ weights, editing is not as
straightforward as changing a vertex position in mesh representations. As well,
it is not possible to generalize to many scenes with a single MLP.

Control-NeRF. [2] proposes to learn feature volume Vs from different scenes,
whose output will be the input to the familiar FΘ MLP:

FΘ : (S(Vs,p)), γ(d)) → (c, σ) (10)

where the feature vector vs is obtained by sampling of the feature volume vs =
S(Vs,p), where S indicates the trilinear resampling operation. This formulation
allows us to optimize the volume Vs for each scene, while simultaneously learning
the parameters of FΘ. After this initial training stage, the parameters Θ of this
rendering module are fixed. For every novel scene, we only optimize its feature
volume Vs. This will allow us to combine and edit scenes by manipulating their
respective feature volumes Vs, and render the result using (6). Figure 10 shows
an example of Control-NeRF in action.

b) Inserting objects from one scene into another

T-rex inserted inside the garden scene Second T-rex added to the scene

a) Original scenes c) Copying and moving objects within the scene

Figure 6: Control-NeRF adding objects in a scene.

4.3 Expensive training

The vanilla NeRF was a proof of concept showcasing the advantages of using
an MPL as the function returning the density and color values since both the
5D input domain and output are continuous and differentiable. However, it
used a fixed positional encoding. Further work explores learning this positional
encoding which enables the use of smaller networks which reduces the number
of floating point and memory access operations speeding up the training step.

Instant Neural Graphics Primitives. [4] proposes an augmentation by a
multiresolution hash table of trainable feature vectors whose values are opti-
mized through stochastic gradient descent. It helps thinking about in reverse
starting from the desired input to the MLP. Since we want to reduce FΘ’s size
we want to provide it with an already rich representation of x. First, we exploit
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the continuous nature of x by doing linear interpolation of the rich features we
are learning. These linear features should be collected in a faster and more
effective way than MLPs, such as hash encoding. Lastly, these encoded features
should follow the input structure, in our case for 3D coordinates, sampling the
corners of 3D voxels. Figure 7 explains this further.

Figure 7: Illustration of the multiresolution hash encoding in 2D. (1) for a given
input coordinate x, we find the surrounding voxels at L resolution levels and assign
indices to their corners by hashing their integer coordinates. (2) for all resulting
corner indices, we look up the corresponding F -dimensional feature vectors from the
hash tables and (3) linearly interpolate them according to the relative position of x
within the respective l-th voxel. (4) we concatenate the result of each level, as well
as auxiliary inputs ξ ∈E such as the viewing direction, producing the encoded MLP
input y ∈LF+E , which (5) is evaluated last. To train the encoding, loss gradients are
backpropagated through the MLP (5), the concatenation (4), the linear interpolation
(3), and then accumulated in the looked-up feature vectors.

4.4 Surface extraction

Even though NeRF is able to recover geometry as in (9), this result is far
from perfect as a threshold value is needed to distinguish forefront objects from
background. Recent methods take the best of surface and volume rendering
but, appropriately, constrain their input to scenes without fog or smoke.

UNISURF. [5] assumes only hard surfaces, thus constraining (6) which no
longer needs α and uses occupancy o ∈ {0, 1} so that the volume rendering
equation is as follows:

N∑
i=1

o(xi)
∏
j<i

(
1− o(xj)

)
c(xi,d) (11)

Then, instead of learning the usual FΘ, the occupancy field oΘ and the color field
cΘ are learned, with the former depending only on x and the latter conditioned
on the surface normal n and feature vector h of the geometry network as well
as the first hit at xs which is retrieved with root-finding along the ray.
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5 Conclusion

Novel view synthesis is a fast and daring research topic. Neural fields have
brought new detail and reconstruction accuracy. However, memory and com-
putation complexity are an issue. Furthermore, as in any method which uses
neural networks, interpretability and control is not as straightforward as the
information is entangled in the network’s weights.

Fortunately, a lot of interest is in the topic and a myriad of works continue
to improve on these pitfalls and try to extend this convenient continuous rep-
resentation. Some of these workarounds and expansions to the original NeRF
paper were shown during the latter section of this report.
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